

As I told you for example, if I am using this mouse then when I am making a mouse click then

your control signal will be read from the control bus by the CPU, it will find out that the mouse

click is there then we will it will give command for display. So, whenever the I/O device is

involved, memory device is involved, which is out of the CPU then the control bus comes into

picture which is taking signals in and out from the control unit.

(Refer Slide Time: 20:34)

Now, very important thing that is we are going to look at what is a basic architecture for a

single unit bus. So, let me zoom it. So, if you look at it, it is basically again let me escape. So,

if you look at in a broad picture, so this is a single bus. So, in one part of the bus this side, you

can have your, you can assume that there will be an internal bus, there will be some control

buses etcetera, there will be your memory, there will be your I/O. So, all these devices will be

there and it is an internal and of course, there can be some control bus and several other buses

which we are at present we are not talking about. So, internal control bus means this is this part

is basically nothing but your CPU.

And this part is your memory, these part is your I/O devices, this part is your memory devices

and in fact this is a control bus to for the synchronization. Now, what we will do now initially

we look into details on the internal CPU bus because for the external devices when you will be

covering entire modules on I/O, there will be entire modules on memory, so we will be handling

that in details.

521

So, for example, for the time being let us just look at the details of the internal bus. So, there

are some registers 𝑅1 to R32, R64 how many registers you have. So, if you want to take from

any input from the register from the internal bus, then what actually you have to do you have

to make 𝑅𝑖𝑛 enable that is 𝑅𝑖𝑛 = 1. If 𝑅𝑖𝑛 is = 1, whatever data is available in the internal

processor bus will be fed to 𝑅1. If it is 𝑅1 𝑅2 we have just drawn it in a single 𝑅𝑖, but in fact if

there are 32 you have to replicate this part in 32 ways. But one very important thing is that so

like for example, if I want to get the value of output of 𝑅𝑖 to this processor bus, I have to make

𝑅𝑖𝑜𝑢𝑡 = 1.

(Refer Slide Time: 22:17)

So, what happens see if for example, I have got the value 32 in the bus. Now, what I want to

do I want to read this 32 into 𝑅1, and 𝑅2 and R3. So, what you have to do 𝑅𝑖𝑛 one for 𝑅1 has

to be made 1, Rin1 for 𝑅2 has to be made 1, and Rin2 for R3 has to be made 1. So, in this case

all the registers will be enabled in a read mode. So, 32 will go to 𝑅1, 𝑅2 and R3 this is fine.

But we have to be very, very careful that 𝑅𝑖𝑜𝑢𝑡 cannot be more than one for any block which

is giving output with register. For example, if I say that somehow I make 𝑅𝑖𝑜𝑢𝑡 that is 𝑅1𝑜𝑢𝑡 =

 1, and 𝑅2𝑜𝑢𝑡 = 1. What will happen the data from register 𝑅1 will also go to the output and

somehow in this case some 𝑅1 will also go to the output 𝑅2 will also go to the output, there

will be a contention so that we cannot have.

So, while giving any output to the control unit sorry what output to the internal CPU bus, we

have to be very, very careful that only one register or one ALU or one memory buffer register

522

etcetera is loading into the internal bus. Multiple parties cannot output at a single go in the

internal CPU bus that is very, very important. Now, who takes care the control unit, because

the control unit will generate the signals 𝑅1𝑖𝑛 1 , 𝑅2𝑜𝑢𝑡 = 1 something like that.

Because whether register 𝑅1 is going to read or whether this one or whether register 𝑅1 is going

to give the output will all depend on the control signals 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡, which will be generated

by the control unit. So, control unit very judiciously takes care that, no two guys, no two

registers or not ALU and register not memory buffer or register together dumps at the same

time in the internal bus that is out signal of any register two registers or one register or a

memory buffer register can be one at a time. So, these are all registers organized in this manner;

these are I forgot to draw this.

Now again if I zoom this next part of it. So, you can see that is basically second part is an ALU.

So, either you can get the value from 𝑌, so that is means whatever this is an input from the

control bus sorry it is from the internal bus where you can get the data values. So, either you

can get the data value Yin, so it is a multiplexer to the ALU. So, you can get one as I told you

ALU basically does all the mathematical and logical operation. So, there are two operands for

this. So, one operand basically comes from this CPU bus, and the operand basically 𝑌 is the

register, so sometimes you may have to hold the value temporarily.

(Refer Slide Time: 24:51)

Like, for example, if I say that I want to make 𝐴𝐷𝐷, I want to go for say 𝐴𝐷𝐷 accumulator and

32 immediate. So, in this case, what is going to happen very interesting thing clearly, so 32

523

value that is what we are seeing that 𝐴𝐷𝐷 32 if you see, so it can be fed over here by this line

direct connection because of the controller will set in such a fashion, so the value of 32 will be

loaded over here. The control signals also will make the ALU to be 𝐴𝐷𝐷 mode for example,

when I am going for going to execute this command 𝐴𝐷𝐷 accumulator 32 immediate.

So, it will be converted to 𝐴𝐷𝐷 mode by the signal for the signals of the control unit 32 will be

loaded in the bus, so you will have the value of 32 over here. But previous value of accumulator

has to be added to this. So, in fact, actually the accumulator will be loaded in the previous cycle

value of accumulator will be loaded to 𝑌 or in some sense you can also think that in my case 𝑌

is an accumulator. So, basically sometimes this is what is the idea.

So, in the first go, the value of accumulator will be or if the accumulator has if you have to load

some particular value the accumulator. In first case, you will be loading the value of the

accumulator from memory or some block to 𝑌, I am assuming A as an accumulator. And in the

second unit clock, you will actually 𝐴𝐷𝐷 this accumulator with 32, but now you can see a MUX

over here, because sometimes we require to 𝐴𝐷𝐷 some constants also like program counter.

Program counter will be program counter plus 1. So, in this case, I have kept the value 4,

because I am assuming in this figure that assuming that the number of instruction length is 4,

basically I can also say that the sorry I can make this constant as one.

So, why I am making this constant as one; basically sometimes when I have to increment the

𝑃𝐶. So, in this case what happens I will make the control unit will make MUX set as this part

that is so for example, if this was about the 𝐴𝐷𝐷, so if I go for a so, for example, if I say that I

want to go for a 𝑃𝐶 increment mode. So, in the 𝑃𝐶 increment mode, what is going to happen,

you have to go for an increment of the 𝑃𝐶. So, in this case I will this is the flow from the

accumulator, so in this case I will not go by this path. So, what I will try to do is that is the

constant. So, the multiplexer will be set in such a fashion by the control unit that this signal

will enable this to go to the ALU.

And in fact, so this one will be added. Now, the value of 𝑃𝐶, so you are going to add it to 1,

and then the 𝑃𝐶 will be say for example, one because this is the chunk of registers. So, for the

time being assume it to be the 𝑃𝐶. So, in this case, what happens you will enable in such a

fashion that this is enable will be 1. So, in this part, now the value of 𝑃𝐶 will be there. So, the

𝑃𝐶 will be connected over here. So, now, it is not 32, it is the value of program counter, and

524

program counter will be program counter plus 1. So, now, after that you can dump the value

output here, and you can again feed it back. So, that is again let me clean the whole picture.

So, now, again what let me do it in steps? So, what is the first step, the first step is basically for

𝐴𝐷𝐷, actually I go by this configuration that the configuration is this, but now for 𝑃𝐶 to be

incremented, let us assume this is to be 𝑃𝐶.

(Refer Slide Time: 27:58)

So, first we are going to go for 𝑃𝐶 = 𝑃𝐶 + 1. So, what we are going to do, for adding basically

we are for adding two numbers or some other operation, we are going to take this path, but

actually for the 𝑃𝐶 because it is to be incremented by a constant. So, what we are going we are

going to take this path. So, the mux is set in such a fashion. So, this one is one or constant one

in case if the size of the instruction is one, it may be 4, 8 or 2, but the size of the instruction

that value will be fed over here, accumulator will in plus mode. So, in this case, we are adding

a value of 1, but now it should not be the value 32.

So, it is not the case you should have the value of the 𝑃𝐶 fed over here. So, what I will do

assuming that this is the 𝑃𝐶, I will make this 𝑃𝐶𝑜𝑢𝑡= 1. So, the value of the 𝑃𝐶 will be in this

bus. So, now, the value of 𝑃𝐶 is fed over here. And addition is done and then what happens this

is the 𝑍𝑖𝑛 plus will be made one or in other words this is the path to control the output of the

ALU to the bus. So, now, it is added 𝑃𝐶 = 𝑃𝐶 + 1, and it is now waiting over here. Now, here

it is 𝑃𝐶 = 𝑃𝐶 + 1. Now, after some time what you will do you will actually now it is having

the value of 𝑃𝐶 = 𝑃𝐶 + 1, because now the output is fed over here.

525

(Refer Slide Time: 29:17)

Now, after that what you will do now you will make this as 1, because now 𝑃𝐶 = 𝑃𝐶 + 1. So,

now, it will be loading the value of 𝑃𝐶 and 𝑃𝐶 will be incremented. So, in this fashion basically

we require a multiplexer for that. So, these are basically if you want to understand what happens

basically in this case, so this is basically the architecture of single bus. So, we have some

registers which have input and output control that is register can be fed in, register can be fed

out from the control bus.

Similarly, this is an ALU, ALU is also the facility you can load, and also you can write out the

value of the ALU to the control bus. And we have a multiplexing arrangement. So, in one path

of the multiplexing arrangement, you can take some operand from the control bus; and the

other operand is a constant like increment, increment by one, but some other constant value.

So, this is in a nutshell a very broad idea of a single bus CPU.

So, now we will tell you whatever I have discussed is given in the text, so I am saying that for

each register including the program counter, memory buffer register etcetera there are two

signals 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡. Basically if 𝑅𝑖𝑛 is 1, the register is going to read from the bus; if 𝑅𝑜𝑢𝑡 =

one then it is going to write into the bus, but you have to be very very careful that we should

not basically enable two 𝑅𝑜𝑢𝑡’s at a time then there will be contention. But there can be multiple

𝑅𝑖𝑛’s.

526

(Refer Slide Time: 30:35)

For example, if you are saying that move 𝑅1 and 𝑅2 then what will happen basically 𝑅2, 𝑅1 is

feeding to 𝑅2. So, what is the control unit is going to generate the control unit is going to

generate that 𝑅𝑜𝑢𝑡 = 1, because 𝑅𝑜𝑢𝑡 is going to give the value to the bus, and 𝑅𝑖𝑛 𝑅2 register is

reading. So, 𝑅2 in should be equal to 1. So, 𝑅2𝑖𝑛= 1, and 𝑅1 out = 1. So, 𝑅𝑜𝑢𝑡 𝑅1𝑜𝑢𝑡 is giving

the value to the bus, and 𝑅𝑖’s reading. So, of course, other things has to be made 0, because 𝑅1

out is equal to in this first case. So, 𝑅1𝑜𝑢𝑡 is = 1. So, 𝑅1 𝑅1𝑖𝑛 has to be made 0 that is the case.

For example, 𝑅2 is reading, so basically 𝑅2𝑖𝑛 is 1 and 𝑅2𝑜𝑢𝑡 has to be basically set to 0 that is

what is very simple logic.

(Refer Slide Time: 31:22)

527

Now, we will take some more important basic ideas, other instructions to make it more clear.

So, we are taking an instruction called 𝑀𝑂𝑉 𝑅1, 32. So, basically what is the steps, what

happens. So, let us assume that this is your control bus then what happen then this is a register

𝑅1. So, as I told you, you can read from the register and also the register can be making an

output this is your control bus. So, either you can read or you can write. So, in this case, the 32

has to move, in fact, here 32 is a memory location given the assumption. So, now, what happens

32 is not an immediate operand, it’s a memory location. So, you have to read the value whatever

is available in memory location 32 to register 𝑅1.

So, of course, register 𝑅1 in should be equal to 1, because we are going to read it and then

basically other steps will follow. So, what are the steps, first step is that the instruction register

should give the command or the microinstructions following that. So, what are the

microinstructions for that? For example, the value of 32 has to be first loaded into the memory

address register, why, because the memory address register is going to give the value to the

memory, and it will say that I want to read the value from 32, and it will dump the value in

memory data register or memory buffer register.

And then finally, what is the first step, you have to put the value of 32 in memory register,

memory address register make the signal read that is the first signal. Then what happens then

the memory will see the memory address register is 30, whatever value is memory location 30

will be dumped to memory data register or memory buffer register and you have to wait for

some time as I told you this signal is called 𝑊𝐹𝑀𝐶.

Control signal that causes the processor to wait for the 𝑀𝐹𝐶 signal. And it will have to wait for

some time, when the memory says that I have write written the value what was the memory

location 32 to the memory data register or the memory buffer register it will become 1 then

you know the memory has given the data now everything is stable. Now, the memory buffer

register will dump the value to 𝑅1.

So, these are the three microinstructions. The first microinstruction will lead to basically

loading the value of 32 in the memory address register, second thing it will read the value in

the memory data register, third microinstruction will load the value of memory location in the

𝑅1. So, what are the steps, let us write down the signals and the registers.

528

(Refer Slide Time: 33:46)

So, basically let us assume this is a control bus. So, first is the instruction register. As I told

you, it is very, very important; the instruction register is the heart. So, what it will load, it will

load the value of 32 in the memory address register. So, as I told you this is a memory address

register - 𝑀𝐴𝑅.

So, in this case, memory address register in will be one and instruction register out will be

equal to 1, because instruction register will dump the value of 32 to the memory address

register. So, in fact these are the two internal signals that is 𝑅𝑜𝑢𝑡 𝐼𝑅𝑜𝑢𝑡 = 1, so instruction

register will dump the value control bus; and 𝑀𝐴𝑅𝑖𝑛= 1, so it will read the value of 32. Now,

the 32 has gone to the memory address register. These are the two internal control signals.

529

(Refer Slide Time: 34:31)

Now, next what next we have the control bus, this is your control bus which is an external

control bus. So, the control unit will generate the value of read to the memory, because this

control bus is connected to the memory, this is the memory which is an external, but the first

two signals are internal, this is an external signal. Now, let us go to the second signal. So, in

the second signal what happens it is saying that now after some amount of time, the data will

come to the memory data register.

(Refer Slide Time: 35:05)

530

We know that you know already the memory address has been set so some data will be coming

to the memory data register this is an internal part or a memory buffer register whatever. So,

as the data from memory location 32 is going to come over here this in signal I have to make

it one, this an internal signal. But then if you wait for some external control bus, you have to

wait for some of the signal which is coming from the memory that is called wait for 𝑀𝐹𝐶 this

signal is 𝑀𝐹𝐶 we are waiting for 𝑀𝐹𝐶. Whenever 𝑀𝐹𝐶 is going to be one at that point of time

basically already 𝑀𝐷𝑅 is equal to one input. So, whenever 𝑀𝐹𝐶= 1 then you know that there

is a valid data over here, I have already made it 1.

So, whatever is the memory buffer register is coming over here, but I cannot immediately read

the value in the memory data register, from the memory data register to 𝑅1. I have to wait for

some amount of time. Whenever 𝑀𝐹𝐶 is 1, which is an external signal then again the third

micro cycle instruction control signals come up. Now what, so now basically 𝑀𝐷𝑅 is already

one signal has come. So, now, what is going to happen already memory data 𝑀𝐷𝑅 has already

read.

(Refer Slide Time: 36:07)

So, now if this is your 𝑀𝐷𝑅 it has already read. So, now, initially it was in was one because it

was reading from the memory, now it has to make it out. So, my memory data out signal will

be 1, so out signal is equal to 1, because already we know that the memory has dumped the

value in the memory data register and it will read to 𝑅1. So, this in signal has to be 1. So, the

memory data will be given over here. So, again in this case, these are the two control signals

531

generated, 𝑀𝐷𝑅𝑜𝑢𝑡 = 1 and 𝑅𝑖𝑛 = 1. And both are registers basically they are all internal

signals. So, this is how in a single bus memory operation that is reading from 32 into 𝑅1 works.

So, basically what I have told is written in the text over here which you can go through.

(Refer Slide Time: 36:51)

Now, we are going to look at in a timing, as I told you that will be all discussing it in terms of

timing sequence. So, let us look at the timing sequence. So, this is your clock and we are doing

everything in the positive edge or in the positive edge of the clock. So, this is the positive edge,

this is the positive edge and so forth. So, first as I told you first one read 𝑅1, 32. So, what you

have to do, first you have to read the value of 32 from the instruction register to the memory

address register. So, what I am doing just after the first clock edge I am making 𝑀𝐵𝑅 =1 and

𝑅𝑜𝑢𝑡 = 1.

So, what is going to happen 𝑅𝑜𝑢𝑡 that is instruction register which is containing now the

memory location 32 will be dumped to memory address register. So, I have made both the

control signals equal to one. So, in the next clock edge, what is going to happen that is the

synchronization. At this clock is what is going to happen the value of 32 from instruction

register will go to the memory register that is at this rising clock edge, the value of 32 will go

from instruction register to memory data register, it will happen at this clock edge.

So, now again let me erase this, and let us study the future in future what happens basically that

is the first clock edge. Secondly, so already we have seen that in this clock edge the value will

be dumped. So, we have actually given the value of address 32 is has gone to the memory data

532

register. So, in this clock edge has got this address of 32 is now loaded into this memory buffer

register sorry memory address register. Now, already we know that we have to give a read

signal. So, anyway I have given the read signal over here, we could have also given the read

signal over, I have given the read signal initially. So, now, at this clock edge, these 32 is loaded

in the memory address register as well as the read signal is the one.

So, now the memory is configured that in this case in the first in this clock edge, the instruction

register has given the value of 32 to the memory address register which is this case, read signal

was already one. So, now, the memory knows very well what it has to do and in fact, already I

have, so this is happening in this clock edge. So, by this clock edge the memory data should

come, because in this case I have sent the value 32 to the address register in this clock edge

that works.

And again in this clock edge, the value of 32 will be taken in by the memory and the read signal

is also one at this place. So, in fact, now it will start dumping the value of the memory data

register the memory will start dumping the value whatever is in the 32 that will actually happen

in the next clock in this clock, it should start happening. Because in this clock edge 32 is loaded

in this clock edge because everything happens in positive clock edge.

So, if you find in the first clock edge nothing happens in the second clock edge basically in this

edge the instruction register value has gone 𝑀𝐴𝑅 address register, and in this clock edge 32 is

loaded in that case and read instruction is also 1. So, in this memory, in this clock edge the

memory is fully configured to deliver the value of memory location 32 the memory data

register, already read signal was there. And if you see 𝑀𝐷𝑅𝑖𝑛 was already set, so now, in this

clock pulse if you compare the value will be after this clock pulse that is this clock pulse the

value will be fed to the memory data register because the signal is already one.

And only after this the 𝑀𝐹𝐶 will signal will be set as high. So, what is this 𝑀𝐹𝐶 signal, only

after this clock pulse? The 𝑀𝐹𝐶 signal will be high means it will say that now I have dumped

the value of memory location 32 in the memory data register in a very peaceful manner

everything is stabilized. Now, you can read, so that is the signal, so that will happen in this

positive clock edge. And after that has happened that 𝑀𝐹𝐶 has been given as out, so what you

will do this says that I have done or I have given everything which was in memory location 32

to the memory data register.

533

